Almost Everywhere Strong Summability of Two-dimensional Walsh-fourier Series
نویسنده
چکیده
A BMO-estimation of two-dimensional Walsh-Fourier series is proved from which an almost everywhere exponential summability of quadratic partial sums of double Walsh-Fourier series is derived.
منابع مشابه
Convergence of Trigonometric and Walsh - Fourier Series
In this paper we present some results on convergence and summability of oneand multi-dimensional trigonometric andWalsh-Fourier series. The Fejér and Cesàro summability methods are investigated. We will prove that the maximal operator of the summability means is bounded from the corresponding classical or martingale Hardy space Hp to Lp for some p > p0. For p = 1 we obtain a weak type inequalit...
متن کاملStatistical Convergence of Walsh-fourier Series
This is a brief and concise account of the basic concepts and results on statistical convergence, strong Cesàro summability and Walsh-Fourier series. To emphasize the significance of statistical convergence, for example we mention the fact that the one-dimensional Walsh-Fourier series of an integrable (in Lebesgue’s sense) function may be divergent almost everywhere, but it is statistically con...
متن کاملSummability of Multi-Dimensional Trigonometric Fourier Series
We consider the summability of oneand multi-dimensional trigonometric Fourier series. The Fejér and Riesz summability methods are investigated in detail. Different types of summation and convergence are considered. We will prove that the maximal operator of the summability means is bounded from the Hardy space Hp to Lp, for all p > p0, where p0 depends on the summability method and the dimensio...
متن کاملMaximal Transference and Summability of Multilinear Fourier Series
We obtain a maximal transference theorem that relates almost everywhere convergence of multilinear Fourier series to boundedness of maximal multilinear operators. We use this and other recent results on transference and multilinear operators to deduce Lp and almost everywhere summability of certain m-linear Fourier series. We formulate conditions for the convergence of multilinear series and we...
متن کاملSome Recent Results on Convergence and Divergence with Respect to Walsh-fourier Series
It is of main interest in the theory of Fourier series the reconstruction of a function from the partial sums of its Fourier series. Just to mention two examples: Billard proved [2] the theorem of Carleson for the Walsh-Paley system, that is, for each function in L we have the almost everywhere convergence Snf → f and Fine proved [4] the Fejér-Lebesgue theorem, that is for each integrable funct...
متن کامل